1.

From the Srednicki solution manual:
8.5) For $x^{0}>y^{0}$, we must close the contour in the lower-half k^{0} plane. The result will vanish if both poles are above the real k^{0} axis, so this is the prescription that yields $\Delta_{\text {ret }}(x-y)$. We can implement this prescription via

$$
\begin{align*}
\Delta_{\mathrm{ret}}(x-y) & =\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k(x-y)}}{-\left(k^{0}-i \epsilon\right)^{2}+\mathbf{k}^{2}+m^{2}} \\
& =\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k(x-y)}}{k^{2}+m^{2}+2 i k^{0} \epsilon} \\
& =\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k(x-y)}}{k^{2}+m^{2}+i \operatorname{sign}\left(k^{0}\right) \epsilon} \tag{8.23}
\end{align*}
$$

where the last line follows because only the sign of the infinitesimal term matters (and not its magnitude). Similarly,

$$
\begin{equation*}
\Delta_{\mathrm{adv}}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k(x-y)}}{k^{2}+m^{2}-i \operatorname{sign}\left(k^{0}\right) \epsilon} \tag{8.24}
\end{equation*}
$$

2.

From the Srednicki solution manual:
(a)

The vertex joins four line segments. The vertex factor is $4!(\mathrm{i})(-\lambda / 24)=-\mathrm{i} \lambda$.
(b)

$$
E=2, V=0:
$$

$E=2, V=2$:

$E=4, V=1:$

$E=4, V=2:$
$S=2^{4}$
$S=2 \times 3$!

