
Homework 2 Solutions Ph 205a Tristan McKinney

1.

We start by writing ∆(x) in terms of the Fourier transforms of the field:

∆(x) =

∫
d3k d3q

(2π)6(2ω~k)(2ω~q)
[a~ke

ikx + a†~ke
−ikx, a~q + a†~q]

=

∫
d3k d3q

(2π)6(2ω~k)(2ω~q)
(2π)3(2ω~q)δ

3(~k − ~q)(eikx − e−ikx)

=

∫
d3k

(2π)3(2ω~k)
(eikx − e−ikx).

(1)

I’ll proceed by using polar coordinates. Note that ω~k = |~k|. The integral
then becomes

∆(x) =

∫
r2 dr dφ d cos θ

(2π)32r

[
e−irteirx cos θ − c.c.

]
=

1

2(2π)2

∫
r dr

[
e−irt

∫ 1

−1
d cos θeirx cos θ − c.c.

]
=

1

2(2π)2

∫
r dr

[
e−irt

irx
(eirx − e−irx)− c.c.

]
=

1

2ix(2π)2

∫ ∞
0

dr
[
eir(x−t) − e−ir(x+t) + e−ir(x−t) − eir(x+t)

]
.

(2)

Rearranging the limits of integration gives us∫ ∞
0

dr
[
eir(x−t) + e−ir(x−t) − e−ir(x+t) − eir(x+t)

]
=

∫ ∞
0

dreir(x−t) −
∫ 0

∞
dre−ir(x−t) −

∫ ∞
0

dre−ir(x+t) +

∫ 0

∞
dreir(x+t)

=

∫ ∞
0

dreir(x−t) +

∫ 0

−∞
dreir(x−t) −

∫ ∞
0

dre−ir(x+t) −
∫ 0

−∞
dre−ir(x+t)

= 2π[δ(x− t)− δ(x+ t)]

(3)

This implies

∆(x) =
δ(x− t)− δ(x+ t)

4πix
. (4)
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As it stands, this formula doesn’t look very Lorentz invariant. We can
put it in a nicer form by noticing that

δ(x2 − t2) =
1

2|x|
[δ(x− t) + δ(x+ t)]

= sgn(t)

[
δ(x− t)

2x
− δ(x+ t)

2x

]
.

(5)

if we imagining that we are integrating over t. The second line is true because
the delta function constrains the x in the second term to be negative whenever
it is nonzero (since t is positive). With this in mind, we can see that

∆(x) = sgn(t)
δ(x2)

2πi
. (6)

2.

The lowering operators will annihilate the vacuum on the right and lowering
operators will do so on the left. This means we have

〈0|φ(x)φ(0) |0〉 =

∫
d3k d3q

(2π)6(2ω~k)(2ω~q)
〈0| a~ke

ikxa†~q |0〉

=

∫
d3k d3q

(2π)6(2ω~k)(2ω~q)
eikx 〈0| [a~k, a

†
~q] |0〉

=

∫
d3k

(2π)3(2ω~k)
eikx.

(7)

Let’s try to use the hint from the problem to evaluate this (we could also
have used the hint in the last problem, if we were careful).

〈0|φ(x)φ(0) |0〉 =
1

(2π)3

∫
d4kθ(k0)δ(−k2)eikx

=
1

(2π)3

∫
dk0 dk1θ(k0)eikx

∫
dk2 dk3δ(−k2)

(8)
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Now we go to polar coordinates to find the integral over the delta function:∫
dk2 dk3δ(−k2) = 2π

∫
r drδ(k20 − k21 − r2)

= 2π

∫
r dr

δ(r −
√
k20 − k21)

2
√
k20 − k21

θ(k20 − k21)

= πθ(k20 − k21).

(9)

Then our equation becomes

〈0|φ(x)φ(0) |0〉 =
π

(2π)3

∫
dk0 dk1θ(k0)θ(k20 − k21)eikx

=
π

(2π)3

∫
k0≥|k1|

dk0 dk1eikx.
(10)

If we define coordinates k± = k0 ± k1, we see k0 = (k+ + k−)/2 and
k1 = (k+ − k−)/2, which implies the Jacobian of the transformation is 1/4.
Furthermore, the region we integrate over is just the whole quadrant with
k± ≥ 0. Finally, we see k · x = −k+x− − k−x+, where x± = (x0 ± x1)/2.
Then we have

〈0|φ(x)φ(0) |0〉 =
π

4(2π)3

∫
dk+e

−ik+x−θ(k+)

∫
dk−e

−ik−x+θ(k−). (11)

This looks likes a product of Fourier transforms of the step function. Looking
this up gives us ∫

dk

2π
e−ikxθ(k) =

1

2
δ(x)− 1

2πix
. (12)

Thus, we have

〈0|φ(x)φ(0) |0〉 =
1

16

[
δ(x−)− 1

iπx−

] [
δ(x+)− 1

iπx+

]
=
−1

16

[
1

π2x+x−
+
δ(x−)

iπx+
+
δ(x+)

iπx−
− δ(x−)δ(x+)

] (13)

The middle two terms match the result from the last problem. The last
term should be interpreted in the following manner: if we integrate over
x+ and x−, there is only a contribution if x+ = x− = 0 is included in the
integration range. We can therefore write it as

δ(x−)δ(x+) = δ(x0)δ(x1), (14)
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since x+ = x− = 0 implies x0 = x1 = 0 and (by construction) the Jacobian
from changing variables in the measure is exactly compensated by factors
from the delta functions. Finally, x1 is actually equivalent to |~x| here (we
rotated to place ~x along the x1 axis), so we should write

δ(x−)δ(x+) = δ(x0)δ(|~x|). (15)

While this doesn’t look particularly Lorentz invariant, it actually is — it
simply says that there is a contribution to an integral only if the point x0 =
~x = 0 is included in the integration region, and this statement does not
depend on our frame. Putting this all together, and remembering that as
we’ve defined things x+x− = −x2/4, we find

〈0|φ(x)φ(0) |0〉 =
1

4π2x2
+ sgn(t)

δ(x2)

4πi
+
δ(t)δ(|~x|)

16
. (16)

3.

i∂0φ = [H,φ]

=

[∫
d3x(pp† + ∂iφ

†∂iφ+m2φdφ), φ(y)

]
=

∫
d3x[p, φ(y)]p†

= −ip†.

(17)

This implies

i∂20φ = −i∂0p†

= [p†, H]

=

∫
d3x[p†(y), ∂iφ

†]∂iφ+m2[p†(y), φ†]φ

= (−i)(−∇2)φ+ (−i)m2φ,

(18)

so we have
(∂20 −∇2 +m2)φ = 0. (19)
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4. (a)

Let’s consider the properties of a near-identity infinitesimal rotation by writ-
ing R = 1 + iδR. Then we have

RTR = 1

(1 + iδRT )(1 + iδR) = 1

δRT + δR = 0.

(20)

Then the generators of rotations (the matrices δR) must be antisymmetric.
This implies that they can be parameterized as

δRab = εabcβc, (21)

which means we can write out the infinitesimal transformation of the fields
as

δφa = εabcφbβc. (22)

To deduce the conserved currents, we see how the action changes under the
above transformation if we treat the parameters β as functions of spacetime:

δS = −
∫

d4x∂µδφ
a∂µφa

= −
∫

d4xεabc(βc∂µφ
b∂µφa + ∂µβ

cφb∂µφa)

=

∫
d4xβc∂µ(εabcφb∂µφa).

(23)

Now, if the fields follow a classical path (that is, if they satisfy the equations of
motion), the variation of the action must vanish even under the circumstances
where the β are (infinitesimal) arbitrary functions of spacetime. This implies
that on the equations of motion,

∂µ(εabcφb∂µφa) = 0. (24)

That means our conserved currents are given by

Jaµ = εabcφb∂µφc. (25)

The above argument is just Noether’s theorem. See section 7.3 of Weinberg
I for a good summary.
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4. (b)

We see that the Qs are given by

Qa =

∫
d3xεabcφbφ̇c. (26)

Then we have

[Qa, Qb] =

∫
d3x d3yεacdεbkl[φcφ̇d, φkφ̇l]

=

∫
d3x d3yεacdεbkl(φc[φ̇d, φk]φ̇l + [φc, φk]φ̇dφ̇l + φkφc[φ̇d, φ̇l] + φk[φc, φ̇l]φ̇d)

= εacdεbkl
∫

d3x d3y[−iδ3(x− y)δdkφcφ̇l + iδ3(x− y)δclφkφ̇d]

= −iεacdεbdl
∫

d3xφcφ̇l + iεacdεbkc
∫

d3xφkφ̇d

= −i(δalδcb − δabδcl)
∫

d3xφcφ̇l + i(δdbδak − δdkδab)
∫

d3xφkφ̇d

= i(δakδbd − δadδbl)
∫

d3xφkφ̇d

= iεcabεckd
∫

d3xφkφ̇d

= iεabcQc.

(27)
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