## 1.

We start by writing $\Delta(\mathbf{x})$ in terms of the Fourier transforms of the field:

$$
\begin{align*}
\Delta(\mathbf{x}) & =\int \frac{\mathrm{d}^{3} k \mathrm{~d}^{3} q}{(2 \pi)^{6}\left(2 \omega_{\vec{k}}\right)\left(2 \omega_{\vec{q}}\right)}\left[a_{\vec{k}} e^{i k x}+a_{\vec{k}}^{\dagger} e^{-i k x}, a_{\vec{q}}+a_{\vec{q}}^{\dagger}\right] \\
& =\int \frac{\mathrm{d}^{3} k \mathrm{~d}^{3} q}{(2 \pi)^{6}\left(2 \omega_{\vec{k}}\right)\left(2 \omega_{\vec{q}}\right)}(2 \pi)^{3}\left(2 \omega_{\vec{q}}\right) \delta^{3}(\vec{k}-\vec{q})\left(e^{i k x}-e^{-i k x}\right)  \tag{1}\\
& =\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}\left(2 \omega_{\vec{k}}\right)}\left(e^{i k x}-e^{-i k x}\right) .
\end{align*}
$$

I'll proceed by using polar coordinates. Note that $\omega_{\vec{k}}=|\vec{k}|$. The integral then becomes

$$
\begin{align*}
\Delta(\mathbf{x}) & =\int \frac{r^{2} \mathrm{~d} r \mathrm{~d} \phi \mathrm{~d} \cos \theta}{(2 \pi)^{3} 2 r}\left[e^{-i r t} e^{i r x \cos \theta}-c . c .\right] \\
& =\frac{1}{2(2 \pi)^{2}} \int r \mathrm{~d} r\left[e^{-i r t} \int_{-1}^{1} d \cos \theta e^{i r x \cos \theta}-c . c .\right]  \tag{2}\\
& =\frac{1}{2(2 \pi)^{2}} \int r \mathrm{~d} r\left[\frac{e^{-i r t}}{i r x}\left(e^{i r x}-e^{-i r x}\right)-c . c .\right] \\
& =\frac{1}{2 i x(2 \pi)^{2}} \int_{0}^{\infty} \mathrm{d} r\left[e^{i r(x-t)}-e^{-i r(x+t)}+e^{-i r(x-t)}-e^{i r(x+t)}\right]
\end{align*}
$$

Rearranging the limits of integration gives us

$$
\begin{align*}
\int_{0}^{\infty} & \mathrm{d} r\left[e^{i r(x-t)}+e^{-i r(x-t)}-e^{-i r(x+t)}-e^{i r(x+t)}\right] \\
& =\int_{0}^{\infty} \mathrm{d} r e^{i r(x-t)}-\int_{\infty}^{0} \mathrm{~d} r e^{-i r(x-t)}-\int_{0}^{\infty} \mathrm{d} r e^{-i r(x+t)}+\int_{\infty}^{0} \mathrm{~d} r e^{i r(x+t)} \\
& =\int_{0}^{\infty} \mathrm{d} r e^{i r(x-t)}+\int_{-\infty}^{0} \mathrm{~d} r e^{i r(x-t)}-\int_{0}^{\infty} \mathrm{d} r e^{-i r(x+t)}-\int_{-\infty}^{0} \mathrm{~d} r e^{-i r(x+t)} \\
& =2 \pi[\delta(x-t)-\delta(x+t)] \tag{3}
\end{align*}
$$

This implies

$$
\begin{equation*}
\Delta(\mathbf{x})=\frac{\delta(x-t)-\delta(x+t)}{4 \pi i x} \tag{4}
\end{equation*}
$$

As it stands, this formula doesn't look very Lorentz invariant. We can put it in a nicer form by noticing that

$$
\begin{align*}
\delta\left(x^{2}-t^{2}\right) & =\frac{1}{2|x|}[\delta(x-t)+\delta(x+t)]  \tag{5}\\
& =\operatorname{sgn}(t)\left[\frac{\delta(x-t)}{2 x}-\frac{\delta(x+t)}{2 x}\right] .
\end{align*}
$$

if we imagining that we are integrating over $t$. The second line is true because the delta function constrains the $x$ in the second term to be negative whenever it is nonzero (since $t$ is positive). With this in mind, we can see that

$$
\begin{equation*}
\Delta(\mathbf{x})=\operatorname{sgn}(t) \frac{\delta\left(\mathbf{x}^{2}\right)}{2 \pi i} \tag{6}
\end{equation*}
$$

## 2.

The lowering operators will annihilate the vacuum on the right and lowering operators will do so on the left. This means we have

$$
\begin{align*}
\langle 0| \phi(\mathbf{x}) \phi(0)|0\rangle & =\int \frac{\mathrm{d}^{3} k \mathrm{~d}^{3} q}{(2 \pi)^{6}\left(2 \omega_{\vec{k}}\right)\left(2 \omega_{\vec{q}}\right)}\langle 0| a_{\vec{k}} e^{i k x} a_{\vec{q}}^{\dagger}|0\rangle \\
& =\int \frac{\mathrm{d}^{3} k \mathrm{~d}^{3} q}{(2 \pi)^{6}\left(2 \omega_{\vec{k}}\right)\left(2 \omega_{\vec{q}}\right)} e^{i k x}\langle 0|\left[a_{\vec{k}}, a_{\vec{q}}^{\dagger}\right]|0\rangle  \tag{7}\\
& =\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}\left(2 \omega_{\vec{k}}\right)} e^{i k x} .
\end{align*}
$$

Let's try to use the hint from the problem to evaluate this (we could also have used the hint in the last problem, if we were careful).

$$
\begin{align*}
\langle 0| \phi(\mathbf{x}) \phi(0)|0\rangle & =\frac{1}{(2 \pi)^{3}} \int \mathrm{~d}^{4} k \theta\left(k^{0}\right) \delta\left(-\mathbf{k}^{2}\right) e^{i k x} \\
& =\frac{1}{(2 \pi)^{3}} \int \mathrm{~d} k^{0} \mathrm{~d} k^{1} \theta\left(k^{0}\right) e^{i k x} \int \mathrm{~d} k^{2} \mathrm{~d} k^{3} \delta\left(-\mathbf{k}^{2}\right) \tag{8}
\end{align*}
$$

Now we go to polar coordinates to find the integral over the delta function:

$$
\begin{align*}
\int \mathrm{d} k^{2} \mathrm{~d} k^{3} \delta\left(-\mathbf{k}^{2}\right) & =2 \pi \int r \mathrm{~d} r \delta\left(k_{0}^{2}-k_{1}^{2}-r^{2}\right) \\
& =2 \pi \int r \mathrm{~d} r \frac{\delta\left(r-\sqrt{k_{0}^{2}-k_{1}^{2}}\right)}{2 \sqrt{k_{0}^{2}-k_{1}^{2}}} \theta\left(k_{0}^{2}-k_{1}^{2}\right)  \tag{9}\\
& =\pi \theta\left(k_{0}^{2}-k_{1}^{2}\right) .
\end{align*}
$$

Then our equation becomes

$$
\begin{align*}
\langle 0| \phi(\mathbf{x}) \phi(0)|0\rangle & =\frac{\pi}{(2 \pi)^{3}} \int \mathrm{~d} k^{0} \mathrm{~d} k^{1} \theta\left(k^{0}\right) \theta\left(k_{0}^{2}-k_{1}^{2}\right) e^{i k x} \\
& =\frac{\pi}{(2 \pi)^{3}} \int_{k^{0} \geq\left|k^{1}\right|} \mathrm{d} k^{0} \mathrm{~d} k^{1} e^{i k x} . \tag{10}
\end{align*}
$$

If we define coordinates $k_{ \pm}=k^{0} \pm k^{1}$, we see $k^{0}=\left(k_{+}+k_{-}\right) / 2$ and $k^{1}=\left(k_{+}-k_{-}\right) / 2$, which implies the Jacobian of the transformation is $1 / 4$. Furthermore, the region we integrate over is just the whole quadrant with $k_{ \pm} \geq 0$. Finally, we see $k \cdot x=-k_{+} x_{-}-k_{-} x_{+}$, where $x_{ \pm}=\left(x^{0} \pm x^{1}\right) / 2$. Then we have

$$
\begin{equation*}
\langle 0| \phi(\mathbf{x}) \phi(0)|0\rangle=\frac{\pi}{4(2 \pi)^{3}} \int \mathrm{~d} k_{+} e^{-i k_{+} x_{-}} \theta\left(k_{+}\right) \int \mathrm{d} k_{-} e^{-i k_{-} x_{+}} \theta\left(k_{-}\right) . \tag{11}
\end{equation*}
$$

This looks likes a product of Fourier transforms of the step function. Looking this up gives us

$$
\begin{equation*}
\int \frac{\mathrm{d} k}{2 \pi} e^{-i k x} \theta(k)=\frac{1}{2} \delta(x)-\frac{1}{2 \pi i x} \tag{12}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
\langle 0| \phi(\mathbf{x}) \phi(0)|0\rangle & =\frac{1}{16}\left[\delta\left(x_{-}\right)-\frac{1}{i \pi x_{-}}\right]\left[\delta\left(x_{+}\right)-\frac{1}{i \pi x_{+}}\right] \\
& =\frac{-1}{16}\left[\frac{1}{\pi^{2} x_{+} x_{-}}+\frac{\delta\left(x_{-}\right)}{i \pi x_{+}}+\frac{\delta\left(x_{+}\right)}{i \pi x_{-}}-\delta\left(x_{-}\right) \delta\left(x_{+}\right)\right] \tag{13}
\end{align*}
$$

The middle two terms match the result from the last problem. The last term should be interpreted in the following manner: if we integrate over $x_{+}$and $x_{-}$, there is only a contribution if $x_{+}=x_{-}=0$ is included in the integration range. We can therefore write it as

$$
\begin{equation*}
\delta\left(x_{-}\right) \delta\left(x_{+}\right)=\delta\left(x_{0}\right) \delta\left(x_{1}\right) \tag{14}
\end{equation*}
$$

since $x_{+}=x_{-}=0$ implies $x_{0}=x_{1}=0$ and (by construction) the Jacobian from changing variables in the measure is exactly compensated by factors from the delta functions. Finally, $x_{1}$ is actually equivalent to $|\vec{x}|$ here (we rotated to place $\vec{x}$ along the $x_{1}$ axis), so we should write

$$
\begin{equation*}
\delta\left(x_{-}\right) \delta\left(x_{+}\right)=\delta\left(x_{0}\right) \delta(|\vec{x}|) \tag{15}
\end{equation*}
$$

While this doesn't look particularly Lorentz invariant, it actually is - it simply says that there is a contribution to an integral only if the point $x_{0}=$ $\vec{x}=0$ is included in the integration region, and this statement does not depend on our frame. Putting this all together, and remembering that as we've defined things $x_{+} x_{-}=-\mathbf{x}^{2} / 4$, we find

$$
\begin{equation*}
\langle 0| \phi(\mathbf{x}) \phi(0)|0\rangle=\frac{1}{4 \pi^{2} \mathbf{x}^{2}}+\operatorname{sgn}(t) \frac{\delta\left(\mathbf{x}^{2}\right)}{4 \pi i}+\frac{\delta(t) \delta(|\vec{x}|)}{16} \tag{16}
\end{equation*}
$$

3. 

$$
\begin{align*}
i \partial_{0} \phi & =[H, \phi] \\
& =\left[\int \mathrm{d}^{3} x\left(p p^{\dagger}+\partial_{i} \phi^{\dagger} \partial_{i} \phi+m^{2} \phi^{d} \phi\right), \phi(y)\right]  \tag{17}\\
& =\int \mathrm{d}^{3} x[p, \phi(y)] p^{\dagger} \\
& =-i p^{\dagger}
\end{align*}
$$

This implies

$$
\begin{align*}
i \partial_{0}^{2} \phi & =-i \partial_{0} p^{\dagger} \\
& =\left[p^{\dagger}, H\right] \\
& =\int \mathrm{d}^{3} x\left[p^{\dagger}(y), \partial_{i} \phi^{\dagger}\right] \partial_{i} \phi+m^{2}\left[p^{\dagger}(y), \phi^{\dagger}\right] \phi  \tag{18}\\
& =(-i)\left(-\nabla^{2}\right) \phi+(-i) m^{2} \phi,
\end{align*}
$$

so we have

$$
\begin{equation*}
\left(\partial_{0}^{2}-\nabla^{2}+m^{2}\right) \phi=0 \tag{19}
\end{equation*}
$$

## 4. (a)

Let's consider the properties of a near-identity infinitesimal rotation by writ$\operatorname{ing} R=1+i \delta R$. Then we have

$$
\begin{align*}
R^{T} R & =1 \\
\left(1+i \delta R^{T}\right)(1+i \delta R) & =1  \tag{20}\\
\delta R^{T}+\delta R & =0 .
\end{align*}
$$

Then the generators of rotations (the matrices $\delta R$ ) must be antisymmetric. This implies that they can be parameterized as

$$
\begin{equation*}
\delta R^{a b}=\epsilon^{a b c} \beta^{c} \tag{21}
\end{equation*}
$$

which means we can write out the infinitesimal transformation of the fields as

$$
\begin{equation*}
\delta \phi^{a}=\epsilon^{a b c} \phi^{b} \beta^{c} . \tag{22}
\end{equation*}
$$

To deduce the conserved currents, we see how the action changes under the above transformation if we treat the parameters $\beta$ as functions of spacetime:

$$
\begin{align*}
\delta S & =-\int \mathrm{d}^{4} x \partial_{\mu} \delta \phi^{a} \partial^{\mu} \phi^{a} \\
& =-\int \mathrm{d}^{4} x \epsilon^{a b c}\left(\beta^{c} \partial_{\mu} \phi^{b} \partial^{\mu} \phi^{a}+\partial_{\mu} \beta^{c} \phi^{b} \partial^{\mu} \phi^{a}\right)  \tag{23}\\
& =\int \mathrm{d}^{4} x \beta^{c} \partial_{\mu}\left(\epsilon^{a b c} \phi^{b} \partial^{\mu} \phi^{a}\right) .
\end{align*}
$$

Now, if the fields follow a classical path (that is, if they satisfy the equations of motion), the variation of the action must vanish even under the circumstances where the $\beta$ are (infinitesimal) arbitrary functions of spacetime. This implies that on the equations of motion,

$$
\begin{equation*}
\partial_{\mu}\left(\epsilon^{a b c} \phi^{b} \partial^{\mu} \phi^{a}\right)=0 \tag{24}
\end{equation*}
$$

That means our conserved currents are given by

$$
\begin{equation*}
J^{a \mu}=\epsilon^{a b c} \phi^{b} \partial^{\mu} \phi^{c} . \tag{25}
\end{equation*}
$$

The above argument is just Noether's theorem. See section 7.3 of Weinberg I for a good summary.

## 4. (b)

We see that the $Q$ s are given by

$$
\begin{equation*}
Q^{a}=\int \mathrm{d}^{3} x \epsilon^{a b c} \phi^{b} \dot{\phi}^{c} \tag{26}
\end{equation*}
$$

Then we have

$$
\begin{align*}
{\left[Q^{a}, Q^{b}\right] } & =\int \mathrm{d}^{3} x \mathrm{~d}^{3} y \epsilon^{a c d} \epsilon^{b k l}\left[\phi^{c} \dot{\phi}^{d}, \phi^{k} \dot{\phi}\right] \\
& =\int \mathrm{d}^{3} x \mathrm{~d}^{3} y \epsilon^{a c d} \epsilon^{b k l}\left(\phi^{c}\left[\dot{\phi}^{d}, \phi^{k}\right] \dot{\phi}^{l}+\left[\phi^{c}, \phi^{k}\right] \dot{\phi}^{d} \dot{\phi}^{l}+\phi^{k} \phi^{c}\left[\dot{\phi}^{d}, \dot{\phi}^{l}\right]+\phi^{k}\left[\phi^{c}, \dot{\phi}^{l}\right] \dot{\phi}^{d}\right) \\
& =\epsilon^{a c d} \epsilon^{b k l} \int \mathrm{~d}^{3} x \mathrm{~d}^{3} y\left[-i \delta^{3}(x-y) \delta^{d k} \phi^{c} \dot{\phi}^{l}+i \delta^{3}(x-y) \delta^{c l} \phi^{k} \dot{\phi}^{d}\right] \\
& =-i \epsilon^{a c d} \epsilon^{b d l} \int \mathrm{~d}^{3} x \phi^{c} \dot{\phi}^{l}+i \epsilon^{a c d} \epsilon^{b k c} \int \mathrm{~d}^{3} x \phi^{k} \dot{\phi}^{d} \\
& =-i\left(\delta^{a l} \delta^{c b}-\delta^{a b} \delta^{c l}\right) \int \mathrm{d}^{3} x \phi^{c} \dot{\phi}^{l}+i\left(\delta^{d b} \delta^{a k}-\delta^{d k} \delta^{a b}\right) \int \mathrm{d}^{3} x \phi^{k} \dot{\phi}^{d} \\
& =i\left(\delta^{a k} \delta^{b d}-\delta^{a d} \delta^{b l}\right) \int \mathrm{d}^{3} x \phi^{k} \dot{\phi}^{d} \\
& =i \epsilon^{c a b} \epsilon^{c k d} \int \mathrm{~d}^{3} x \phi^{k} \dot{\phi}^{d} \\
& =i \epsilon^{a b c} Q^{c} . \tag{27}
\end{align*}
$$

