## 1 Free real scalar field

The Hamiltonian is

$$
H=\int d^{3} x \mathcal{H}=\frac{1}{2} \int d^{3} x\left(p(x)^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right)
$$

Let us expand both $\phi$ and $p$ in Fourier series:

$$
\phi(t, \mathbf{x})=\int \frac{d^{3} p}{2 \omega(\mathbf{p})} \tilde{\phi}(t, \mathbf{x}) e^{i \mathbf{p} \cdot \mathbf{x}}, \quad p(t, \mathbf{x})=\int \frac{d^{3} p}{2 \omega(p)} \tilde{p}(t, \mathbf{x}) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

where $\omega(\mathbf{p})=\sqrt{\mathbf{p}^{2}+m^{2}}$. Then:

$$
H=\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}(2 \omega(\mathbf{p}))^{2}}\left(|\tilde{p}(\mathbf{p})|^{2}+|\tilde{\phi}(\mathbf{p})|^{2} \omega(\mathbf{p})^{2}\right)
$$

This is a Hamiltonian for an infinite collection of harmonic oscillators labeled by $\mathbf{p} \in \mathbb{R}^{3}$ and energy $\omega(p)$. Introduce creation-annihilation operators:

$$
a(\mathbf{p})=\frac{p(\mathbf{p})-i \phi(\mathbf{p})}{\omega(\mathbf{p}) \sqrt{2}}, \quad a^{\dagger}(\mathbf{p})=\frac{p^{\dagger}(\mathbf{p})+i \phi^{\dagger}(\mathbf{p})}{\omega(\mathbf{p}) \sqrt{2}} .
$$

Then:

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3} 2 \omega(\mathbf{p})} \omega(\mathbf{p})\left(a^{\dagger}(\mathbf{p}) a(\mathbf{p})+\frac{1}{2}\right)
$$

The last term in parentheses can be dropped (divergent vacuum energy). The operators $a, a^{\dagger}$ satisfy:

$$
\left[a(\mathbf{p}), a^{\dagger}\left(\mathbf{p}^{\prime}\right)\right]=(2 \pi)^{3} 2 \omega(\mathbf{p}) \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right), \quad\left[a(\mathbf{p}), a\left(\mathbf{p}^{\prime}\right)\right]=0
$$

The expression $2 \omega(\mathbf{p}) \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right)$ is Lorenz-invariant, so this is a natural normalization of creation-annihilation operators in a relativistic theory.

So, as expected, the free scalar field describes noninteracting spinless bosonic particles with a relativistic energy-momentum relation $E(\mathbf{p})=\sqrt{\mathbf{p}^{2}+m^{2}}$.

## 2 Free complex scalar field

Commutation relations:

$$
\begin{aligned}
{[\phi(t, \mathbf{x}), p(t, \mathbf{y})] } & =i \delta^{3}(\mathbf{x}-\mathbf{y}), \\
{\left[\phi(t, \mathbf{x})^{\dagger}, p(t, \mathbf{y})^{\dagger}\right] } & =i \delta^{3}(\mathbf{x}-\mathbf{y}), \\
{\left[\phi(t, \mathbf{x})^{\dagger}, p(t, \mathbf{y})\right] } & =0 \\
{\left[\phi(t, \mathbf{x}), p(t, \mathbf{y})^{\dagger}\right] } & =0 \\
{[\phi(t, \mathbf{x}), \phi(t, \mathbf{y})] } & =0 \\
{\left[\phi(t, \mathbf{x})^{\dagger}, \phi(t, \mathbf{y})^{\dagger}\right] } & =0 \\
{\left[\phi(t, \mathbf{x}), \phi(t, \mathbf{y})^{\dagger}\right] } & =0 \\
{[p(t, \mathbf{x}), p(t, \mathbf{y})] } & =0 \\
{\left[p(t, \mathbf{x})^{\dagger}, p(t, \mathbf{y})^{\dagger}\right] } & =0 \\
{\left[p(t, \mathbf{x}), p(t, \mathbf{y})^{\dagger}\right] } & =0 .
\end{aligned}
$$

Here $p=\dot{\phi}^{\dagger}, p^{\dagger}=\dot{\phi}$.
Hamiltonian:

$$
H=\int d^{3} x\left(p p^{\dagger}+\partial_{i} \phi^{\dagger} \partial_{i} \phi+m^{2} \phi^{\dagger} \phi\right)
$$

Let us show that these equations describe the bosonic Fock space for relativistic particles (with $E_{\mathbf{p}}=\sqrt{\mathbf{p}^{2}+m^{2}}$ ). Let us Fourier transform the scalar field $\phi$ :

$$
\phi(t, \mathbf{x})=\int \frac{d^{3} p}{2 E_{\mathbf{p}}(2 \pi)^{3}} \tilde{\phi}(t, \mathbf{p}) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

The Klein-Gordon equation

$$
\left(\partial_{0}^{2}-\nabla^{2}+m^{2}\right) \phi=0
$$

gives an ordinary differential equation for $\tilde{\phi}(t, \mathbf{p})$ :

$$
\frac{\partial^{2} \tilde{\phi}}{\partial t^{2}}=-\left(\mathbf{p}^{2}+m^{2}\right) \tilde{\phi}
$$

The general solution is

$$
\tilde{\phi}(t, \mathbf{p})=e^{-i E_{p} t} a(\mathbf{p})+e^{i E_{p} t} c(\mathbf{p})
$$

It will be convenient to rename $c(\mathbf{p})=b(-\mathbf{p})^{\dagger}$. Then

$$
\phi(t, \mathbf{x})=\int \frac{d^{3} p}{2 E_{\mathbf{p}}(2 \pi)^{3}}\left(a_{\mathbf{p}} e^{i p \cdot x}+b(\mathbf{p})^{\dagger} e^{-i p \cdot x}\right)
$$

Similarly

$$
\phi(t, \mathbf{x})^{\dagger}=\int \frac{d^{3} p}{2 E_{\mathbf{p}}(2 \pi)^{3}}\left(b_{\mathbf{p}} e^{i p \cdot x}+a(\mathbf{p})^{\dagger} e^{-i p \cdot x}\right)
$$

We can invert these formulas and express $a, b, a^{\dagger}, b^{\dagger}$ in terms of $\phi, \dot{\phi}$ and $\phi^{\dagger}, \dot{\phi}^{\dagger}$. (This is an exercise). Then the commutation relations of $a, a^{\dagger}, b, b^{\dagger}$ turn out

$$
\begin{align*}
{\left[a(\mathbf{p}), a^{\dagger}(\mathbf{q})\right] } & =(2 \pi)^{3} 2 E_{\mathbf{p}} \delta^{3}(\mathbf{p}-\mathbf{q})  \tag{1}\\
{\left[b(\mathbf{p}), b^{\dagger}(\mathbf{q})\right] } & =(2 \pi)^{3} 2 E_{\mathbf{p}} \delta^{3}(\mathbf{p}-\mathbf{q}) \tag{2}
\end{align*}
$$

with all other commutators vanishing. Thus it is natural to postulate the existence of the vacuum state $|0\rangle$, annihilated by all $a(\mathbf{p})$ and $b(\mathbf{p})$. Then the Hilbert space is the bosonic Fock space built on the sum of two copies of $L^{2}\left(\mathbb{R}^{3}\right)$. Why two copies? We expected only one! Resolution: we have an additional quantum number which distinguishes $b$-particles from $a$-particles. The $b$-particles are actually anti-particles of $a$-particles! (see below).

Hamiltonian becomes

$$
H=\frac{1}{2} \int \frac{d^{3} p}{2 E_{\mathbf{p}}(2 \pi)^{3}} E_{\mathbf{p}}\left(a^{\dagger}(\mathbf{p}) a(\mathbf{p})+a(\mathbf{p}) a^{\dagger}(\mathbf{p})+b^{\dagger}(\mathbf{p}) b(\mathbf{p})+b(\mathbf{p}) b^{\dagger}(\mathbf{p})\right) .
$$

Let us normal-order it:

$$
H=V(2 \pi)^{-3} \int d^{3} p E_{\mathbf{p}}+\ldots
$$

Thus the vacuum energy density is divergent. If we cut off the integral at $|\mathbf{p}|=\Lambda$, we find

$$
\mathcal{E}_{0}=\frac{\Lambda^{4}}{8 \pi^{2}}
$$

This is the simplest example of an ultraviolet divergence.

## 3 Noether's theorem

(Reading: section 22, pp. 132-135).

Noether's theorem says that for every continuous symmetry of the action there is a current $j_{\mu}$ (vector-valued function made of fields and their derivatives) which satisfies

$$
\partial_{\mu} j^{\mu}=0
$$

This implies that

$$
Q=\int d^{3} x j^{0}(t, \mathbf{x})
$$

is time-independent. I.e. it is a conserved charge. In the Hamiltonian formalism this is expressed as $Q, H=0$, which upon quantization becomes $[Q, H]=0$.

Let us derive the Noether theorem for a theory of scalar fields with a Lagrangian $\mathcal{L}\left(\phi^{a}\right)$. Suppose the infinitesimal symmetry transformation is given by

$$
\delta \phi^{a}=\epsilon \cdot v^{a}(\phi) .
$$

Consider now the same transformation, but with $\epsilon$ a function of $x$. Since the action is of first order in derivatives of $\phi$, the variation of the action must be of the form

$$
\delta S=\int d^{4} x j^{\mu} \partial_{\mu} \epsilon
$$

for some $j^{\mu}$ independent of $\epsilon$. But on equations of motion this must vanish, for arbitrary $\epsilon$. Therefore $\partial_{\mu} j^{\mu}=0$.

Let us apply this procedure to the complex scalar field $\phi$ and the transformation

$$
\delta \phi=i \epsilon \phi, \quad \delta \phi^{\dagger}=-i \epsilon \phi^{\dagger} .
$$

The variation of the action is

$$
\delta S=i \int d^{4} x \partial_{\mu} \epsilon\left(-\phi^{\dagger} \partial^{\mu} \phi+\partial^{\mu} \phi^{\dagger} \phi\right) .
$$

Hence the current is

$$
j_{\mu}=-i\left(\phi^{\dagger} \partial_{\mu} \phi-\partial_{\mu} \phi^{\dagger} \phi\right) .
$$

What is the meaning of the corresponding charge, in terms of particles?

$$
Q=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{\mathbf{k}}}\left(a^{\dagger}(\mathbf{k}) a(\mathbf{k})-b^{\dagger}(\mathbf{k}) b(\mathbf{k})\right) .
$$

I.e. it is the number of particles minus the number of anti-particles.

Let me consider another example: translational symmetry. Here

$$
\delta \phi=\epsilon^{\mu} \partial_{\mu} \phi
$$

Note that here $\epsilon$ has a vector index. Thus we expect

$$
\delta S=\int d^{4} x \partial_{\nu} \epsilon^{\mu} T_{\mu}^{\nu}
$$

for some tensor $T$. (It is called the stress-energy tensor). Let us determine $T$. For constant $\epsilon$ we have

$$
\delta S=\int d^{4} x \epsilon^{\mu} \partial_{\mu} \mathcal{L}
$$

This indeed vanishes for constant $\epsilon$ (by integration by parts), but does not vanish for nonconstant $\epsilon$. But for non-constant $\epsilon$ we also get other terms in the variation:

$$
\delta S=\int d^{4} x\left(-\partial_{\mu} \epsilon^{\mu} \mathcal{L}+\partial_{\mu} \epsilon^{\nu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \partial_{\nu} \phi\right)
$$

Hence

$$
T_{\nu}^{\mu}=\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \partial_{\nu} \phi-\delta_{\nu}^{\mu} \mathcal{L} .
$$

For the free scalar field, we get

$$
T_{\nu}^{\mu}=-\partial^{\mu} \phi^{\dagger} \partial_{\nu} \phi+\partial^{\mu} \phi \partial_{\nu} \phi^{\dagger}-\delta_{\nu}^{\mu} \mathcal{L} .
$$

For example:

$$
T_{0}^{0}=\partial_{0} \phi^{\dagger} \partial_{0} \phi+\nabla \phi^{\dagger} \nabla \phi+m^{2} \phi^{\dagger} \phi
$$

The corresponding "charge" is the energy (i.e. the Hamiltonian). Similarly,

$$
T_{i}^{0}=\partial_{0} \phi^{\dagger} \partial_{i} \phi+\partial_{i} \phi^{\dagger} \partial_{0} \phi
$$

The corresponding charge is minus the momentum. Indeed, after expressing in terms of $a$ and $b$ get

$$
\int d^{3} x T_{i}^{0}=-\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{\mathbf{k}}} k_{i}\left(a^{\dagger}(\mathbf{k}) a(\mathbf{k})+b^{\dagger}(\mathbf{k}) b(\mathbf{k})\right) .
$$

Starting from a symmetry, one can get a conserved charge. Conversely, starting from a conserved charge $Q$, one can try to get a symmetry transformation, by letting

$$
\delta F=\{Q, F\}
$$

Then $\delta H=0$, and $\delta$ commutes with time translations.
One can show directly that $Q$ is the generator of symmetry transformations:

$$
Q=-\int d^{3} x p_{i} \delta \phi^{i}, \quad\left\{Q, \phi^{j}\right\}=\delta \phi^{j}
$$

In quantum theory:

$$
\left[Q, \phi^{j}\right]=-i \delta \phi^{j}
$$

A finite transformation is

$$
\phi \rightarrow U^{-1} \phi U, \quad U=\exp (-i t Q)
$$

In relativistic field theory, we are interested in translations and Lorenz transformations. Together they form Poincare group:

$$
x \rightarrow \Lambda x+a .
$$

Generators of translations are momenta $P_{\mu}=\int d^{3} x T_{\mu}^{0}$. Lorenz transformations act by

$$
\phi^{\prime}(x)=\phi\left(\Lambda^{-1} x\right) .
$$

Infinitesimal transformation $\Lambda=1+\omega$ gives

$$
\delta \phi=\frac{1}{2} \omega_{\mu \nu}\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}\right) \phi
$$

We can achieve this by letting

$$
M^{\mu \nu}=\int d^{3} x\left(x^{\mu} T^{0 \nu}-x^{\nu} T^{0 \mu}\right)
$$

This suggests that the conserved current for the Lorenz transformations is

$$
L^{\rho \mu \nu}=x^{\mu} T^{\rho \nu}-x^{\nu} T^{\rho \mu}
$$

It is conserved because $T^{\mu \nu}=T^{\nu \mu}$.

It is interesting to compute Poisson brackets or commutator of all these generators. For example:

$$
\left[M^{\mu \nu}, M^{\rho \sigma}\right]=i\left(g^{\mu \rho} M^{\nu \sigma}-(\mu \leftrightarrow \nu)\right)-(\rho \leftrightarrow \sigma) .
$$

This algebra characterizes infinitesimal Lorenz transformations. Infinitesimal rotations are

$$
J_{i}=\frac{1}{2} \epsilon_{i j k} M^{j k}
$$

infinitesimal boosts are $K_{i}=M^{i 0}$. In terms of $J$ and $K$ we have

$$
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=i \epsilon_{i j k} K_{j}, \quad\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k} J_{k}
$$

The other commutators are

$$
\left[P^{\mu}, M^{\rho \sigma}\right]=i\left(g^{\mu \sigma} P^{\rho}-(\rho \leftrightarrow \sigma)\right) .
$$

## 4 Wick theorem

Observables are polynomial functions of $\phi$ and its derivatives. Need an efficient way to evaluate vacuum expectation values of such observables.

Wick theorem helps us do this. Let $f_{\alpha}, \alpha=1, \ldots, N$ be a linear function of $a_{i}, a_{i}^{\dagger}$, where $i$ is either a discrete or continuous index. Then

$$
\langle 0| f_{1} \ldots f_{N}|0\rangle=\left.\frac{\partial}{\partial \lambda_{1}} \cdots \frac{\partial}{\partial \lambda_{N}}\right|_{\lambda_{\alpha}=0} \exp \left(\frac{1}{2} \sum_{\alpha \beta} \lambda_{\alpha} \lambda_{\beta} \Delta_{\alpha \beta}\right),
$$

where

$$
\Delta_{\alpha \beta}=\langle 0| f_{\alpha} f_{\beta}|0\rangle
$$

This can be written in terms of "pairings" of $f_{1}, \ldots, f_{N}$. Note that the vacuum expectation value vanishes if $N$ is odd.

Proof proceeds as follows. First evaluate

$$
\langle 0| \exp \left(\sum_{i}\left(\lambda_{i} a_{i}+\bar{\lambda} a_{i}^{\dagger}\right)\right)|0\rangle=\exp \left(\frac{1}{2} \sum_{i} \bar{\lambda}_{i} \lambda_{i}\right) .
$$

This follows from the Baker-Campbell-Hausdorff formula. Then re-express the r.h.s. in terms of expectation values.

## 5 The spin-statistics relation

Let us compute the commutator of $\phi(x)$ and $\phi(y)$ (in the real case). It vanishes outside the light-cone.

$$
[\phi(x), \phi(y)]=\int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega(k)}\left(e^{i k(x-y)}-e^{-i k(x-y)}\right)
$$

Clearly Lorenz-invariant, so is a function only of $(x-y)^{2}$ and maybe $x^{0}-y^{0}$ (if $(x-y)^{2}<0$ ).

Now suppose the separation is space-like. Can make $(x-y)$ purely spatial. Then the integrand is odd, and the commutator vanishes. For a time-like separation one gets something nonzero.

What if we tried to declare $a$ and $a^{\dagger}$ fermionic oscillators instead? Would get cos instead of sin, so the anti-commutator would be non-vanishing. (The commutator would be even worse).

## $6 \quad$ Scattering theory

First:

$$
\begin{aligned}
\int d^{3} x e^{-i k x} \phi(x) & =\frac{1}{2 \omega} a(\mathbf{k})+\frac{1}{2 \omega} e^{2 i \omega t} a^{\dagger}(-\mathbf{k}) \\
\int d^{3} x e^{-i k x} \partial_{0} \phi & =-\frac{i}{2} a(\mathbf{k})+\frac{i}{2} e^{2 i \omega t} a^{\dagger}(-\mathbf{k})
\end{aligned}
$$

Hence

$$
a(\mathbf{k})=\int d^{3} x e^{-i k x}\left(i \partial_{0} \phi+\omega \phi\right)=i \int d^{3} x e^{-i k x} \stackrel{\leftrightarrow}{\partial}_{0} \phi
$$

