Week 2 (due Jan. 20)

1. Consider a beam of neutral kaons passing through a slab of material which acts on the K^0 and \bar{K}^0 components of the beam as follows:

$$|K^0\rangle \mapsto a|K^0\rangle, \quad |\bar{K}^0\rangle \mapsto b|\bar{K}^0\rangle.$$

Here a and b are complex numbers. Suppose the slab is placed some distance $L = \tau$ from the kaon source, and that at the source the kaons are all K^0 . Assume also that K_S and K_L are given by the difference and sum of K^0 and \bar{K}^0 , respectively. Find the fraction of K_S in the beam right after passing through the slab, as a function of τ . Express the answer in terms of a, b, Γ_S , Γ_L , and the mass difference between K_S and K_L .

2. Compute the ratio of decay rates of the charged pion π^- into $e^-\bar{\nu}_e$ and $\mu^-\bar{\nu}_\mu$. (Assuming the neutrino is massless). Compare with experimental data.