Week 2 (due Jan. 20)

1. Consider a beam of neutral kaons passing through a slab of material which acts on the K^{0} and \bar{K}^{0} components of the beam as follows:

$$
\left|K^{0}\right\rangle \mapsto a\left|K^{0}\right\rangle, \quad\left|\bar{K}^{0}\right\rangle \mapsto b\left|\bar{K}^{0}\right\rangle .
$$

Here a and b are complex numbers. Suppose the slab is placed some distance $L=\tau$ from the kaon source, and that at the source the kaons are all K^{0}. Assume also that K_{S} and K_{L} are given by the difference and sum of K^{0} and \bar{K}^{0}, respectively. Find the fraction of K_{S} in the beam right after passing through the slab, as a function of τ. Express the answer in terms of a, b, Γ_{S}, Γ_{L}, and the mass difference between K_{S} and K_{L}.
2. Compute the ratio of decay rates of the charged pion π^{-}into $e^{-} \bar{\nu}_{e}$ and $\mu^{-} \bar{\nu}_{\mu}$. (Assuming the neutrino is massless). Compare with experimental data.

