Week 6 (due Nov. 11)

Reading: Schwartz 27.1-27.7.

1. The 4 -gluon color-ordered scattering amplitude $A(1-, 2-, 3+, 4+)$ is usually written as in Eq. (27.85) in Schwartz. Show (without appealing to parity symmetry) that it can also be written as follows:

$$
A(1-, 2-, 3+, 4+)=\frac{[34]^{4}}{[12][23][34][41]} .
$$

2. Graviton scattering amplitudes can also be computed using the helicity formalism. Recall that gravitons also have two polarization states, with helicities +2 and -2 . The corresponding polarization tensors are simply squares of polarization vectors of photons with helicities +1 and -1 , respectively. One difference compared to the case of gluons is that the interaction constant is dimensionful: it is $1 / M_{P l}$, where $M_{P l}$ is the Planck mass. Use dimensional analysis to show that the 3 -graviton interaction vertex is quadratic in momenta. Then use little group scaling to determine all 3 -graviton on-shell scattering amplitudes.
3. Use the BCFW recursion to deduce the 4-graviton scattering amplitude $A(1-, 2-, 3+, 4+)$.
