Week 9 (due March 11)

1. Compute the Chern-Simons 5 -form and 7 -form.
2. Consider a gauge theory on a Riemannian 3-manifold M with gauge group $U(N)$ and an action

$$
\int_{M} \operatorname{Tr}(F \wedge * F)+m \int_{M} C S(\omega),
$$

where $F=d \omega+\frac{1}{2}[\omega, \omega]$ is the curvature, $C S(\omega)$ is the Chern-Simons 3-form, and m is a parameter. Derive the equations of motion corresponding to this action. Show that in the limit $m \rightarrow \infty$ they reduce to $F=0$.
3. Consider a gauge theory on a manifold M which contains, besides the gauge field ω on a principal G-bundle P, a section s of an associated complex vector bundle E. We also assume that $\operatorname{Ad}(P)$ and E have invariant scalar products (Euclidean and Hermitian, respectively). Take the action to be

$$
\frac{1}{2 e^{2}} \int_{M}\langle F, \wedge * F\rangle+\int_{M}\langle\nabla s, \wedge * \nabla s\rangle,
$$

where e^{2} is a parameter. Derive the equations of motion corresponding to this action.

