Week 6 (due Feb. 18)

1. Problem 6.8 in Morita.
2. Consider a unit sphere S^{2} in \mathbb{R}^{3}. The tangent bundle to \mathbb{R}^{3} is trivial and one can define a connection on it by letting

$$
\nabla \frac{\partial}{\partial x^{i}}=0
$$

where x^{1}, x^{2}, x^{3} are Cartesian coordinates on \mathbb{R}^{3}. The restriction of $T \mathbb{R}^{3}$ to the sphere has the tangent bundle of S^{2} as a subbundle. Thus we may define a connection on $T S^{2}$ using the orthogonal projection method described in class.
(a) If we use the standard spherical coordinates θ, ϕ on the unit sphere, $T S^{2}$ is spanned by $\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}$. Express these tangent vectors in terms of $\frac{\partial}{\partial x^{2}}$. Show that they are orthogonal but not normalized correctly. Find the correct normalization and thereby get an orthonormal trivialization of $T S^{2}$. (Note: spherical coordinates are good away from the poles only, so this does not give a global trivialization of $T S^{2}$ which is in fact nontrivial.)
(b) Compute the connection 1-forms for $T S^{2}$ with respect to the above trivialization of $T S^{2}$. Also compute the curvature tensor.
(c) Compute the connection 1-form and curvature for $T S^{2}$ with respect to the orthogonal but not orthonormal trivialization $\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}$.

