1. Let E be a real vector bundle of rank r with a connection ∇. Let ω be the corresponding connection 1 -form defined on some trivializing neighborhood U. As explained in class, ∇ enables us to define connections on vector bundles $\Lambda^{k} E$ for all k. In particular, we get a connection on a rankone bundle $\Lambda^{r} E$. The corresponding connection 1-form is valued in ordinary real numbers (rather than matrices). Express this 1 -form in terms of the matrix-valued form ω.
2. Let E be a real vector bundle equipped with a connection ∇ and a Euclidean metric h. Show that if ∇ is compatible with h, then horizontal transport preserves the norm of a section. Show that the converse is also true. That is, if parallel transport along any curve preserves the norm of any section, then ∇ is compatible with h.
3. Any coordinate system on \mathbb{R}^{2} gives rise to a trivialization of $T \mathbb{R}^{2}$. By definition, the trivial connection on $T \mathbb{R}^{2}$ corresponds to zero connection 1-form ω in Cartesian coordinates (i.e. in the trivialization given by ∂_{x} and ∂_{y}).
(a) Find the connection 1-form on $T \mathbb{R}^{2}$ corresponding to the polar coordinates r, ϕ. Verify that the curvature tensor still vanishes.
(b) The vectors ∂_{r} and ∂_{ϕ} are orthogonal to each other, but only ∂_{r} has unit norm. So this is not an orthonormal trivialization. If we divide ∂_{ϕ} by its norm, we will get an orthonormal trivialization of $T \mathbb{R}^{2}$. Find the connection 1-form corresponding to this trivialization. Verify that the matrices ω_{j}^{i} are skew-symmetric and that the curvature tensor vanishes.
