Week 6 (due May 13)

1. Consider the space of complex square matrices of size $n \times n$. This is a complex vector space of dimension n^{2}. Consider a symplectic form on it:

$$
\omega=\frac{i}{2} \operatorname{Tr} d Z \wedge d Z^{\dagger}
$$

where Z is the matrix. The symplectic form is obviously invariant under the $U(n)$ action $Z \mapsto U Z U^{-1}$.
(a) Compute the moment map for this action.
(b) Show that the symplectic quotient of the space of matrices by the $U(n)$ action (at zero "level", i.e. we require the moment map to be identically zero) is isomorphic to the quotient of \mathbb{C}^{n} (with its standard symplectic form) by the permutation group S_{n} which permutes all coordinates.
2. One might think that compact phase space is rather exotic. To dispel this notion, consider a nonrelativistic charged spinless particle of mass m and charge e moving on the $x y$ plane and subject to a constant magnetic field B in the z direction. Further, we will assume that x and y directions are periodically identified, with periods L_{x} and L_{y}.
(a) Show that in the limit $m \rightarrow \infty$ the phase space is a torus; compute the corresponding symplectic form.
(b) Determine the conditions on B which ensure the existence of the pre-quantum line bundle.

