Week 2 (due April 15)

1. Consider a surface S in \mathbb{R}^3 given by the equation z = f(x, y). The standard flat metric on \mathbb{R}^3 induces a curved metric on this surface. It also gives rise to a second fundamental form.

(a) Express the metric of S at a point (x, y) in terms of f(x, y) and its derivatives.

(b) Express the second fundamental form of S in terms of f(x, y).

2. Show that the isomorphism of the Lie algebras of SO(n) and Spin(n) maps an antisymmetric matrix a_{ij} (regarded as an element of the Lie algebra of SO(n)) to

$$\frac{1}{4}\sum_{i,j}a_{ij}e_i\circ e_j,$$

where e_i is an element of an orthonormal basis of \mathbb{R}^n , regarded as an element of Cl(n).