Week 9 (due March 12)

Reading: Srednicki, sections 51, 52.

1. (20pt) Problem 52.3 in Srednicki.
2. Consider a theory of a spinor field Ψ with the Lagrangian

$$
L=\bar{\Psi}(i \not \partial-m) \Psi+g \bar{\Psi} \Psi \phi(x),
$$

where $\phi(x)$ is some function of x (not a quantum field). One refers to $\phi(x)$ as an external field. If g is small, we can treat the second term in the Lagrangian as a perturbation. This theory describes scattering of "electrons" and "positrons" by the external potential $\phi(x)$ (which in general is both space- and time-dependent).
(a) Deduce the Feynman rules for computing the scattering in this theory (in momentum space). Show that the resulting vertex is proportional to the Fourier transform of $\phi(x)$ evaluated at the 4 -momentum $q=p^{\prime}-p$, where p^{\prime} and p are final and initial 4 -momenta of the "electron".
(b) Now suppose the function $\phi(x)$ is independent of time. Then its Fourier transform is proportional to $\delta\left(E^{\prime}-E\right)$, where E^{\prime} and E are final and initial electron energies. That is, the scattering amplitude can be written as

$$
2 \pi \delta\left(E^{\prime}-E\right) T_{f i}
$$

Show that the scattering cross-section is

$$
\frac{d \sigma}{d \Omega}=\frac{m}{16 \pi^{2} E}\left|T_{f i}\right|^{2}
$$

(c) Now assume that $\phi(t, \mathbf{x})=a / r$, where $r^{2}=\mathbf{x}^{2}$. (This is a toy model for relativistic scattering in the Coulomb field). Compute the cross-section as a function of energy and scattering angle.

