Week 2 (due Oct. 17)

Reading: Srednicki, sections 1 and 3.

1. Consider free nonrelativistic bosons (in Fock space formalism).
(a) Compute the commutator of the creation and annihilation operators

$$
\left[\Psi(t, \vec{x}), \Psi^{\dagger}\left(t^{\prime}, \vec{x}^{\prime}\right)\right]
$$

for arbitrary t, t^{\prime} and $\vec{x}, \vec{x}^{\prime}$. (Hint: use the solution for Ψ and Ψ^{\dagger} in terms of time-independent creation-annihilation operators in momentum space a_{p} and a_{p}^{\dagger}).
(b) Consider the operator

$$
P_{k}(t)=-i \int d^{3} x \Psi(t, \vec{x})^{\dagger} \partial_{k} \Psi(t, \vec{x}), \quad k=1,2,3 .
$$

Show that $\left[H, P_{k}\right]=0$, i.e. P_{k} is an integral of motion. Show that

$$
\left[P_{k}, \Psi(t, \vec{x})\right]=i \partial_{k} \Psi(t, \vec{x}), \quad\left[P_{k}, \Psi(t, \vec{x})^{\dagger}\right]=i \partial_{k} \Psi(t, \vec{x})^{\dagger} .
$$

(This means that P_{k} is the generator of spatial translations, i.e. the momentum operator).
2. The Hamiltonian for the free complex scalar is given by

$$
H=\int d^{3} x\left(p p^{\dagger}+\partial_{i} \phi^{\dagger} \partial_{i} \phi+m^{2} \phi^{\dagger} \phi\right) .
$$

The equal-time commutation relations are

$$
\begin{aligned}
{[\phi(t, \vec{x}), p(t, \vec{y})] } & =i \delta^{3}(\vec{x}-\vec{y}), \\
{\left[\phi(t, \vec{x})^{\dagger}, p(t, \vec{y})^{\dagger}\right] } & =i \delta^{3}(\vec{x}-\vec{y}), \\
{\left[\phi(t, \vec{x})^{\dagger}, p(t, \vec{y})\right] } & =0, \\
{\left[\phi(t, \vec{x}), p(t, \vec{y})^{\dagger}\right] } & =0, \\
{[\phi(t, \vec{x}), \phi(t, \vec{y})] } & =0, \\
{\left[\phi(t, \vec{x})^{\dagger}, \phi(t, \vec{y})^{\dagger}\right] } & =0, \\
{\left[\phi(t, \vec{x}), \phi(t, \vec{y})^{\dagger}\right] } & =0, \\
{[p(t, \vec{x}), p(t, \vec{y})] } & =0, \\
{\left[p(t, \vec{x})^{\dagger}, p(t, \vec{y})^{\dagger}\right] } & =0, \\
{\left[p(t, \vec{x}), p(t, \vec{y})^{\dagger}\right] } & =0 .
\end{aligned}
$$

Show that the Heisenberg equations of motion

$$
i \partial_{0} \phi(x)=[\phi(x), H], \quad i \partial_{0} p(x)=[p(x), H]
$$

are equivalent to the Klein-Gordon equation for $\phi(x)$.

