## Week 1

Each (sub)problem is worth 10 pts.
Reading: Srednicki 1.1 (i.e. section 1 of Part 1).

1. Let $A$ be an operator acting in the Hilbert space of a single particle. Consider a system of N identical particles labeled by $\alpha=1, \ldots, N$ and the corresponding operators $A_{\alpha}$ each of which depends only on the coordinates and momenta of the $\alpha^{\text {th }}$ particle. Consider the following operator acting on the Hilbert space of N particles (which may be bosons or fermions)

$$
A^{(N)}=\sum_{\alpha=1}^{N} A_{\alpha} .
$$

Using the method of second quantization as explained in class, we can represent this operator as follows:

$$
A^{(N)}=\sum_{i, j} a_{i}^{\dagger} a_{j}\langle i| A|j\rangle
$$

Here $|i\rangle$ is an arbitrary orthonormal basis of states in the one-particle Hilbert space, $a_{i}$ and $a_{j}^{\dagger}$ are the corresponding annihilation and creation operators, and summation extends over all basis states.

The current density operator in an N-particle system is defined to be

$$
\mathbf{j}(\mathbf{x})=\frac{1}{2 m} \sum_{\alpha=1}^{N}\left(\mathbf{p}_{\alpha} \delta\left(\mathbf{x}-\mathbf{x}_{\alpha}\right)+\delta\left(\mathbf{x}-\mathbf{x}_{\alpha}\right) \mathbf{p}_{\alpha}\right) .
$$

Here $\mathbf{p}_{\alpha}$ is the momentum operator for the $\alpha^{\text {th }}$ particle. Express the current density operator in terms of the creation-annihilation operators in the momentum basis (i.e. choosing momentum eigenstates as the basis) and in terms of field operators $\Psi(x)$ (i.e. choosing coordinate eigenstates as the basis).
2. (a) Consider a state in the bosonic Fock space which has the form

$$
\exp \left(\sum_{i} \lambda_{i} a_{i}^{\dagger}\right)|0\rangle
$$

where $\lambda_{i}$ are some complex numbers. What conditions should be imposed on $\lambda_{i}$ to ensure that the state is normalizable? Determine the average number of particles in this state and the standard deviation.
(b) Consider modified bosonic creation and annihilation operators

$$
b_{i}=a_{i}-\lambda_{i}, \quad b_{i}^{\dagger}=a_{i}^{\dagger}-\lambda_{i}^{*}
$$

Show that they satisfy the same commutation relations as $a_{i}, a_{i}^{\dagger}$ and show that the state in part (a) is the vacuum state for $b_{i}, b_{i}^{\dagger}$.
(c) Consider a Hamiltonian in the bosonic Fock space

$$
H=\sum_{i}\left(\omega_{i} a_{i}^{\dagger} a_{i}+\beta_{i} a_{i}+\beta_{i}^{*} a_{i}^{\dagger}\right),
$$

where $\omega_{i}$ are positive numbers and $\beta_{i}$ are complex numbers. Show that this Hamiltonian does not conserve the particle number. Defining new creation and annihilation operators as above and choosing $\lambda_{i}$ appropriately, show that the Hamiltonian in fact describes a collection of noninteracting bosonic particles, but with a modified ground state (i.e. the state with the lowest possible energy is not the vacuum state $|0\rangle$ for $a_{i}$ ). Determine the groundstate energy and the energies of one-particle excitations with respect to this ground state.
(d) Given bosonic creation-annihilation operators $a$ and $a^{\dagger}$ and a real number $t$, consider their linear combinations

$$
b=a \cosh t+a^{\dagger} \sinh t, \quad b^{\dagger}=a \sinh t+a^{\dagger} \cosh t
$$

Show that these operators satisfy the same commutation relations as $a, a^{\dagger}$. Determine the vacuum state with respect to the operators $b, b^{\dagger}$. (N.B. Such states are called squeezed states in the literature.)
(e) Consider the following Hamiltonian in the bosonic Fock space:

$$
H=\sum_{i}\left(\omega_{i} a_{i}^{\dagger} a_{i}+\frac{1}{2} \lambda_{i} a_{i} a_{i}+\frac{1}{2} \lambda_{i} a_{i}^{\dagger} a_{i}^{\dagger}\right) .
$$

Here $\omega_{i}, \lambda_{i}$ are real numbers, and $\omega_{i}>0$. Show that this Hamiltonian does not conserve the particle number. By defining suitable linear combinations $b_{i}, b_{i}^{\dagger}$ as in part (d), show that one can diagonalize this Hamiltonian. Show that in fact it describes a system of noninteracting bosons and determine the energy of the ground state and the energies of one-particle excitations.

