Week 2 (due April 16)

1. In this exercise you will apply the Faddeev-Popov procedure to simplify some finite-dimensional integrals over spaces of matrices. Such integrals are known as matrix integrals and have many applications in physics and mathematics.
(a) Consider an integral of the form

$$
\int d M f(M)
$$

where M is a Hermitian $N \times N$ matrix and $f(M)$ is a function invariant under arbitrary unitary transformations:

$$
f\left(U M U^{\dagger}\right)=f(M)
$$

Show that the usual measure

$$
d M=\prod_{i} d M_{i i} \prod_{i<j} d \operatorname{Re} M_{i j} d \operatorname{Im} M_{i j}
$$

is invariant under these transformations.
(b) We would like to reduce the matrix integral to the integral over the space of orbits of $U(N)$ action. Since every Hermitian matrix can be diagonalized by a unitary transformation, these orbits are labeled by the (unordered) eigenvalues of M, i.e. by N unordered real numbers. Compute the measure on this space using the Faddeev-Popov procedure. That is, consider the gauge-fixing conditions

$$
M_{i j}=0, \quad \forall i<j
$$

Also, consider the function $\Delta(M)$ defined by

$$
\Delta(M) \int d U \prod_{i<j} \delta^{2}\left(\left(U M U^{\dagger}\right)_{i j}\right)=1
$$

The usual Faddeev-Popov manipulations show that the matrix integral $\int d M f(M)$ is equal to

$$
\frac{1}{N!} \operatorname{vol}(U(N)) \int \prod_{i=1}^{N} d m_{i} \Delta\left(\operatorname{diag}\left(m_{1}, \ldots, m_{N}\right)\right) f\left(\operatorname{diag}\left(m_{1}, \ldots, m_{N}\right)\right)
$$

The factor $1 / N!$ arises from the fact that sets of eigenvalues related by a permutation label the same orbit. To get the measure on the eigenvalues m_{1}, \ldots, m_{N}, evaluate $\Delta(M)$ for a diagonal M.
(c) Repeat (b) for the case when the Hermitian matrix M is replaced by a real symmetric matrix, and the unitary group $U(N)$ is replaced by the orthogonal group $O(N)$. Orbits of $O(N)$ action on the space of real symmetric matrices are again labeled by N unordered real numbers, but the measure on this space is different.
(d) Repeat (b) for the integral

$$
\int d V f(V)
$$

where V is a unitary matrix, and $f(V)$ is invariant under conjugation. Note that $U(N)$ acts by conjugation on itself, and every unitary matrix V can be diagonalized by a $U(N)$ transformation. Thus we can label orbits of $U(N)$ action by the unordered eigenvalues of V, i.e. by N unordered complex numbers with absolute value 1 . We can parameterize them as $\exp \left(i \alpha_{j}\right), j=$ $1, \ldots, N$, where α_{j} runs from 0 to 2π. Your task is to determine the measure on the space of α_{j} variables.
2. Compute the BRST current (i.e. the Noether current corresponding to the BRST symmetry) in the Yang-Mills theory without matter fields. Use the Lorenz gauge.

