1 Content of the course

"Quantum Field Theory" by M. Srednicki, Part 1.

2 Combining QM and relativity

We are going to keep all axioms of QM:

1. states are vectors (or rather rays) in Hilbert space.
2. observables are Hermitian operators and their values are the spectrum.
3. probability of measuring a particular value a of an observable A in a state Ψ is

$$
\frac{\left\|P_{a} \Psi\right\|^{2}}{\|\Psi\|^{2}}
$$

where P_{a} is a projector to the eigenspace of A corresponding to a.
4. Time evolution of states is governed by the Schrödinger equation

$$
i \frac{d \Psi(t)}{d t}=H \Psi(t)
$$

where H is the Hamiltonian (energy operator).
5. Symmetries are unitary or anti-unitary operators preserving the Hamiltonian.
6. etc.

For a nonrelativistic particle, we let $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$ and let the momentum operator (generator of translations) be $\hat{\mathbf{P}}=-i \hbar \nabla$. Since $E=\mathbf{P}^{2} / 2 m$ classically, it is natural to define $H=\hat{\mathbf{P}}^{2} / 2 m=-\hbar^{2} \nabla^{2} / 2 m$.

From now on, I will let $\hbar=1$, so $H=-\nabla^{2} / 2 m$.
For a relativistic particle,

$$
E=\sqrt{\mathbf{P}^{2} c^{2}+m^{2} c^{4}}
$$

so can try

$$
H=\sqrt{-\nabla^{2} c^{2}+m^{2} c^{4}}
$$

This expression is problematic: treats time and space asymmetrically and appears nonlocal.

Alternatively, we can "quantize" the squared dispersion relation $E^{2}=$ $\mathbf{P}^{2} c^{4}+m^{2} c^{4}$ to get the Klein-Gordon equation

$$
-\frac{\partial^{2}}{\partial t^{2}} \Psi=\left(-c^{2} \nabla^{2}+m^{2} c^{4}\right) \Psi
$$

This equations is more reasonable, as it is more symmetric w.r. to exchange of time and space. To see relativistic invariance better, let $x^{0}=c t$. From now I will let $c=1$, so in such units $x^{0}=t$. Also, $x_{0}=-t$, and $x^{i}=x_{i}, i=1,2,3$. Greek indices will run over the set $0,1,2,3$.

Minkowski metric: $g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)=g^{\mu \nu} . x_{\mu}=g_{\mu \nu} x^{\nu}$, where we use Einstein's convention (summation over repeated indices). Similarly, $x^{\mu}=g^{\mu \nu} x_{\nu}$.

Minkowski interval: $x^{2}=x^{\mu} x_{\mu}=x^{\mu} x^{\mu} g_{\mu \nu}=\left(x^{0}\right)^{2}-\sum_{i}\left(x^{i}\right)^{2}$.
Lorenz transformations are

$$
\bar{x}^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu}
$$

where Λ is any real matrix such that $\bar{x}^{\mu} \bar{x}_{\mu}=x^{\mu} x_{\mu}$.
Now we can check relativistic invariance of the KG equation, i.e. that $\phi(x)$ and $\phi(\bar{x})$ satisfy the same equation.

Let

$$
\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}, \partial^{\mu}=g^{\mu \nu} \partial_{\nu} .
$$

Then

$$
\bar{\partial}^{\mu}=\Lambda_{\nu}^{\mu} \bar{\partial}^{\nu}
$$

and therefore $\bar{\partial}^{2}=\partial^{2}$. Hence the KG operator is Lorenz-invariant.
Problems:

1. $\int d^{3} x|\Psi|^{2}$ is not conserved. Moreover, it has wrong transformation properties under the Lorenz transformation: $|\Psi|^{2}$ is not a time component of a 4 -vector, so we do not expect a continuity equation to hold (and it does not). One can write down something which is a component of a conserved 4-vector:

$$
j_{\mu}=i\left(\Psi^{*} \partial_{\mu} \Psi-\partial_{\mu} \Psi^{*} \Psi\right)
$$

satisfies $\partial_{\mu} j^{\mu}=0$, and so

$$
\int d^{3} x j^{0}
$$

is conserved. But j^{0} is not positive-definite, so cannot be interpreted as probability density.
2. Negative-energy solutions.

Dirac tried to solve these problems by looking for a first-order equation, but for a multicomponent wavefunction. This solved problem 1, but not problem 2.

Ultimately, the problem is that relativistic QM can be consistently developed only if we do not work in a theory with a fixed number of particles. Hence we need to understand how to describe systems where particle creation and annihilation is allowed.

3 Fock space methods (second quantization)

3.1 Bosons

A single particle has $\mathcal{H}_{1}=L^{2}\left(\mathbb{R}^{3}\right)$ as its Hilbert space. Two particles have $\mathcal{H}_{2}=L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)_{\text {sym }} \simeq$ Sym $^{2} \mathcal{H}_{1}$. And so on. The Hilbert space without any particles is one-dimensional (the vacuum state). Thus

$$
H=\mathbb{C} \oplus \mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \ldots=\oplus_{k=0}^{\infty} \operatorname{Sym}^{k}\left(\mathcal{H}_{1}\right) .
$$

This is called the bosonic Fock space $\mathcal{F}\left(\mathcal{H}_{1}\right)$ associated to \mathcal{H}_{1}.
The Fock space is always infinite-dimensional, even if \mathcal{H}_{1} is not. Let us look at the extreme case, $\mathcal{H}_{1} \simeq \mathbb{C}$. Then

$$
\mathcal{F}(\mathbb{C})=\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \ldots
$$

Thus a vector in $\mathcal{F}(\mathbb{C})$ is an infinite sequence of numbers or vector $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ such that $\sum_{k}\left|a_{k}\right|^{2}<\infty$.

It is often convenient to think of such a sequence as Taylor coefficients of an analytic function

$$
f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots
$$

Degree is then identified with the particle number. Polynomials form a dense set in this space of functions and correspond to states with a finite number of particles.

Two natural operations on polynomials are z and ∂. They satisfy

$$
[\partial, z]=1 .
$$

One calls ∂ the annihilation operator a, and calls z the creation operator a^{\dagger}. They are indeed conjugate to each other if we define the scalar product to be

$$
\|f(z)\|^{2}=\frac{1}{2 \pi} \int d^{2} z|f(z)|^{2} e^{-|z|^{2}}
$$

Using this scalar product, one can compute $\left\|z^{n}\right\|^{2}=n!$. Thus a normalized n-particle state is

$$
|n\rangle=\frac{1}{\sqrt{n}!} z^{n}=\frac{1}{\sqrt{n}!}\left(a^{\dagger}\right)^{n}|0\rangle .
$$

Thus

$$
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad a|n\rangle=\sqrt{n}|n-1\rangle
$$

This can serve as a definition of creation and annihilation operators.
The particle number operator can be expressed as $N=z \partial_{z}=a^{\dagger} a$. Eigenstates of N are homogeneous polynomials. Polynomials are Fock space states which involve only a finite number of particles.

More generally, suppose $\mathcal{H}_{1} \simeq \mathbb{C}^{N}$. Let us choose a basis $\psi_{i}, i=1, \ldots, N$ in \mathcal{H}_{1} and introduce N variables z_{1}, \ldots, z_{N}. Then one can identify $\operatorname{Sym}^{p}\left(\mathcal{H}_{1}\right)$ with the space of polynomials in N variables of total degree p : a state with k_{1} particles in the state ψ_{1}, k_{2} particles in the state ψ_{2}, etc. can be identified with the polynomial

$$
z_{1}^{k_{1}} \ldots z_{N}^{k_{N}}
$$

We define $a_{i}=\partial_{i}, a_{i}^{\dagger}=z_{i}$ so that

$$
\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{j}^{i} .
$$

The Fock space is then the space of all polynomials in variables z_{1}, \ldots, z_{N}. If we change the basis in \mathcal{H}_{1}, creation-annihilation operators also change: if $\psi_{i}^{\prime}=B_{i}^{j} \psi_{j}$, where B is a unitary matrix, then

$$
a_{i}^{\prime}=B_{j}^{* i} a_{j}
$$

The particle number operator is $N=\sum_{i} z_{i} \partial_{i}=\sum_{i} a_{i}^{\dagger} a_{i}$. Eigenstates of N are homogenous polynomials.

If \mathcal{H}_{1} is infinite-dimensional, but has a countable basis, we can still think of its Fock space as a completion the space of polynomials in variables z_{1}, z_{2}, \ldots.

But usual bases on $L^{2}\left(\mathbb{R}^{3}\right)$ (momentum eigenstates $|\mathbf{p}\rangle$ and coordinate eigenstates $|\mathbf{x}\rangle$ are not like that. Still, one can define analogues of creation and annihilation operators:

$$
\Psi(x)=\sum_{i} a_{i} \psi_{i}(x), \quad \Psi^{\dagger}(x)=\sum_{i} a_{i}^{\dagger} \psi_{i}^{*}(x) .
$$

They satisfy

$$
\left[\Psi(x), \Psi^{\dagger}(y)\right]=\delta^{3}(x-y) .
$$

All operators in Fock space can be expressed in terms of $\Psi(x)$ and $\Psi^{\dagger}(x)$. Examples:
0 . The particle number operator $N=\int d^{3} x \Psi^{\dagger}(x) \Psi(x)$.

1. One-particle operators. A one-particle operator is an operator of the form

$$
\sum_{k=1}^{\infty} \sum_{i=1}^{k} 1 \otimes \ldots \otimes 1 \otimes \mathcal{O} \otimes 1 \otimes \ldots \otimes 1=\sum_{k=0}^{\infty} \sum_{i=1}^{k} \mathcal{O}_{i}
$$

where \mathcal{O} is an operator on \mathcal{H}_{1}. It can be written as

$$
\int d^{3} x d^{3} y \Psi^{\dagger}(x)\langle x| \mathcal{O}|y\rangle \Psi(y)
$$

For example, the kinetic energy operator is a one-particle operator with $\mathcal{O}=$ $-\nabla^{2} / 2 m$, so the corresponding operator in Fock space is

$$
\int d^{3} x \Psi^{\dagger}(x)\left(-\nabla^{2} / 2 m\right) \Psi(x)
$$

The particle number operator is a one-particle operator with $\mathcal{O}=1$.
2. Two-particle operators. These are operators of the form

$$
\sum_{k=1}^{\infty} \sum_{1 \leq i<j \leq k} \mathcal{O}_{i j}
$$

where $\mathcal{O}_{i j}$ is an operator on \mathcal{H}_{2} which acts only on the i-th and j-th particle. The corresponding operator in Fock space is

$$
\frac{1}{2} \int d^{3} x d^{3} y d^{3} z d^{3} t \Psi^{\dagger}(x) \Psi^{\dagger}(y)\langle x, y| \mathcal{O}|z, t\rangle \Psi(t) \Psi(z)
$$

For example, the potential energy operator is of this form, with $\langle x, y| \mathcal{O}|z, t\rangle=$ $V(x-y) \delta^{3}(x-z) \delta^{3}(y-t)$. The corresponding operator in Fock space is

$$
\frac{1}{2} \int d^{3} x d^{3} y \Psi^{\dagger}(x) \Psi^{\dagger}(y) V(x-y) \Psi(y) \Psi(x)
$$

How do we formulate dynamics in the Fock space? Since the emphasis is on creation-annihilation operators, it is often convenient to work in the

Heisenberg picture and write EOMs for Ψ and Ψ^{\dagger}, instead of the Schrödinger equation. For free particles, we get

$$
\frac{\partial \Psi}{\partial t}=i[H, \Psi]=-\frac{i}{2 m} \nabla^{2} \Psi .
$$

This looks like Schrödinger equation, but for a field operator. Hence the name "second quantization". Let us find a solution. Go to momentum space:

$$
\Psi(x)=\int d^{3} p(2 \pi)^{-3} b(p) e^{i p x}
$$

Then

$$
\left[b(p), b^{\dagger}(q)\right]=(2 \pi)^{3} \delta^{3}(p-q)
$$

and

$$
\begin{gathered}
H=\int d^{3} p(2 \pi)^{-3} \frac{p^{2}}{2 m} b^{\dagger}(p) b(p) . \\
b(p, t)=e^{-i E_{p} t} b(p, 0) .
\end{gathered}
$$

Thus

$$
\Psi(t, \mathbf{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} b(p, 0) e^{-E_{p} t+i \mathbf{p} \cdot \mathbf{x}}
$$

This completely determines the evolution of all observables.
For an interacting system, get the following equation:

$$
i \frac{\partial \Psi}{\partial t}=-\frac{1}{2 m} \nabla^{2} \Psi+\int d^{3} y \Psi^{\dagger}(y) \Psi(y) V(x-y) \Psi(x)
$$

This is nonlinear and cannot be regarded as "second-quantized" Schrodinger equation. Its classical analogue is a PDE for an ordinary function $\Psi(t, x)$, which is NOT interpreted as a quantum-mechanical wavefunction.

Remark: the quantum harmonic oscillator corresponds to the Fock space for $\mathcal{H}=1$. A collection of N harmonic oscillators is equivalent to the bosonic Fock space for $\mathcal{H}_{1}=\mathbb{C}^{N}$. Thus the quantization of a system of harmonic oscillators can be interpreted in terms of free bosonic particles. The energies of 1-particle states are ω_{i}.

3.2 Fermions

Now consider fermionic particles which obey the Pauli principle. Fermionic wavefunctions are antisymmetric with respect to the exchange of any two particles.

Let us again begin with the case $\mathcal{H}_{1}=\mathbb{C}$. Then the Fock space is

$$
\mathcal{F}\left(\mathcal{H}_{1}\right)=\mathbb{C} \oplus \mathbb{C}
$$

This is two-dimensional, and there are many ways to think about it. E.g., we can identify it with the states of a spin- $1 / 2$ particle. But we will choose a more esoteric viewpoint. Consider a variable θ which has a multiplication rule $\theta^{2}=0$. Then "analytic functions of θ " are linear functions

$$
f(\theta)=a+b \theta
$$

The space of such functions can be identified with $\mathcal{F}\left(\mathcal{H}_{1}\right)$: th vacuum state is 1 , while the 1-particle state is θ.

Creation-annihilation operators are defined as before: $c^{\dagger}=\theta, c=\partial_{\theta}$. Note that $c^{2}=\left(c^{\dagger}\right)^{2}=0$. It is also easy to check that $c c^{\dagger}+c^{\dagger} c=1$. Note the crucial plus sign. The particle number operator is $N=c^{\dagger} c$.

We can define the scalar product so that c^{\dagger} is indeed the adjoint of c. Details of this are left as an exercise.

Now consider N-dimensional \mathcal{H}_{1}. Introduce N variables θ_{i} which satisfy $\theta_{i} \theta_{j}+\theta_{j} \theta_{i}=0$. Consider an analytic function of θ_{i}. Again, the series terminates in degree N. The total dimension of the space of functions is 2^{N}. The k-ht term in the expansion is

$$
\sum_{i_{1} \ldots i_{k}} f^{i_{1} \ldots i_{k}} \theta_{i_{1}} \ldots \theta_{i_{k}}
$$

Here the coefficient functions are totally anti-symmetric, as required by the Fermi statistics. The creation operators are $c_{i}^{\dagger}=\theta_{i}$, the annihilation operators are $c_{i}=\partial_{i}$. They satisfy

$$
c_{i} c_{j}^{\dagger}+c_{j}^{\dagger} c_{i}=\delta_{i j}
$$

Note that the fermionic Fock space has a symmetry which replaces the vacuum with the "filled state" $\theta_{1} \ldots \theta_{N}$ and exchanges c_{i} and c_{i}^{\dagger}. There is nothing analogous in the bosonic case.

The rest proceeds as before. We can choose a countable basis in $L^{2}\left(\mathbb{R}^{3}\right)$ and define

$$
\Psi(x)=\sum_{i} \psi_{i}(x) c_{i}, \quad \Psi^{\dagger}(x)=\sum_{i} \psi_{i}^{*}(x) c_{i}^{\dagger}
$$

They satisfy

$$
\Psi(x) \Psi^{\dagger}(y)+\Psi^{\dagger}(y) \Psi(x)=\delta^{3}(x-y)
$$

These are called canonical anti-commutation relations. In the noninteracting case, the EOM is linear and solved exactly as in the bosonic case.

4 Classical field theory

There is something special about differential equations which come from "dequantizing" the Heisenberg equations of motion: they come from a variational principle.

4.1 Classical mechanics

Recall classical mechanics. Action:

$$
S=\int_{0}^{T} d t L\left(q^{i}(t), \dot{q}^{i}(t)\right)
$$

Euler-Lagrange variational principle: $\delta S=0$ with $q(0)$ and $q(T)$ fixed. Equations of motion:

$$
\frac{\partial L}{\partial q^{i}}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{i}}\right) .
$$

Alternatively, we can introduce $p_{i}=\partial L / \partial q^{i}$, the Hamiltonian

$$
H=p \dot{q}-L
$$

and write the action as

$$
S=\int d t(p \dot{q}-H(p(t), q(t)))
$$

The equation $\delta S=0$ then gives

$$
\dot{q}^{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q^{i}} .
$$

These are Hamilton equations.
Finally, if we introduce the Poisson bracket

$$
\{F, G\}=\frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q^{i}}-\frac{\partial F}{\partial q^{i}} \frac{\partial G}{\partial p_{i}}
$$

for any two functions F, G, the Hamilton equations of motion can be written as

$$
\dot{q}^{i}=\left\{H, q^{i}\right\}, \quad \dot{p}_{i}=\left\{H, p_{i}\right\} .
$$

We also have

$$
\left\{p_{i}, q_{j}\right\}=\delta_{i}^{j}, \quad\left\{q^{i}, q^{j}\right\}=\left\{p_{i}, p_{j}\right\}=0
$$

Under quantization, Poisson bracket becomes i times the commutator.

4.2 Nonrelativistic field theory

Now we want to have a similar formalism where i is replaced with a continuous index \mathbf{x}. Instead of $q_{i}(t)$ will have $\Psi(t, \mathbf{x})$. Action:

$$
S=\int d t L(\Psi, \dot{\Psi})
$$

EOM:

$$
\frac{\delta L}{\delta \Psi(t, \mathbf{x})}=\frac{d}{d t}\left(\frac{\delta L}{\delta \dot{\Psi}(t, \mathbf{x})}\right)
$$

Here the variational derivative is defined by

$$
\delta L=\int d^{3} x \frac{\delta L}{\delta \Psi(t, \mathbf{x})} \delta \Psi(t, \mathbf{x})
$$

In the free case, it is sufficient to take

$$
L=L_{0}=\int d^{3} x\left(i \Psi^{*} \dot{\Psi}-\frac{1}{2 m} \partial_{i} \Psi^{*} \partial_{i} \Psi\right) .
$$

Note that L is an integral of a local expression, $L=\int d^{3} x \mathcal{L}$, so

$$
S=\int d t d^{3} x \mathcal{L}(\Psi, \dot{\Psi})
$$

This is very nice, but is not obligatory in a nonrelativistic situation: in an interacting case one finds

$$
L=L_{0}-\frac{1}{2} \int d^{3} x d^{3} y|\Psi(x)|^{2}|\Psi(y)|^{2} V(\mathbf{x}-\mathbf{y})
$$

This is local in some very special cases. For example, when $V(x)=\delta^{3}(x)$ ("contact interaction"). In the relativistic case only such interaction are allowed.

Note that this fits better with the second version of the variational principle: $i \Psi^{*}$ is the "momentum conjugate to Ψ ". So one has Poisson brackets

$$
\left\{\Psi^{*}(\mathbf{x}), \Psi(\mathbf{y})\right\}=-i \delta^{3}(\mathbf{x}-\mathbf{y})
$$

The Hamiltonian is then given by the same expression as before, but Ψ 's are now ordinary functions, not Fock-space operators.

Quantization now is easy: we get the standard commutation relations for Ψ and Ψ^{*} and realize them as operators in Fock space.

How do we get fermionic Fock space in this way? There is no good way of doing so. Reason: classical limit makes sense only when a large number of particles are in the same state.

For clarity, consider discrete case. In order for the commutator term to be negligible, need to consider a state where a has a large expectation value (and small variance). Hence $N=a^{\dagger} a$ will have a large expectation value. This is not possible in the fermionic case.

Formally, we can still consider the same equations, but with Ψ and Ψ^{*} satisfying anticommutation relations. This means that they are not ordinary functions, but generators of a Grassmann algebra. We will use this trick later.

4.3 Relativistic field theory

Main idea: interpret the KG equation not as an equation for a wavefunction, but an equation for a field operator. That is, let us make relativistic not the one-particle Schrodinger equation, but the Heisenberg equation of motion for the Fock space operator.

To understand it, we need to specify commutation relations for Ψ in such a way, that the KG equation is the Heisenberg equation for some Hamiltonian. We can do this like this: first solve an analogous classical problem, and then quantize everything.

The classical KG equation comes from the action

$$
S=\frac{1}{2} \int d t d^{3} x\left(\partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \phi^{2}\right) .
$$

This looks more like the first version of the variational principle. The momentum is

$$
p(x)=\dot{\phi}(x)
$$

and the Hamiltonian is

$$
H=\int d^{3} x \mathcal{H}=\frac{1}{2} \int d^{3} x\left(p(x)^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right)
$$

The Poisson brackets are

$$
\{p(\mathbf{x}), \phi(\mathbf{y})\}=\delta^{3}(\mathbf{x}-\mathbf{y}\}
$$

Hence quantization will give

$$
[\phi(\mathbf{x}), p(\mathbf{y})]=i \delta^{3}(\mathbf{x}-\mathbf{y})
$$

This is just like $[q \cdot p]=i$, but with continuous indices.
Reason: the classical system describes the continuum limit of a system of particles connected with springs, and $\phi(x)$ is the continuum limit of the coordinate of a particle.

Classical excitations are waves. What about quantization? Expect that we get a system of free bosonic particles with a relativistic dispersion law. Two reasons: (1) that is what we set out to describe; (2) classical system can be Fourier-analyzed into a collection of harmonic oscillators; each oscillator is equivalent to a Fock space (for a one-dimensional vector space), so the whole thing is equivalent to a Fock space (for an infinite-dimensional 1-particle space), so describes free bosonic particles.

