Week 2 (due Oct. 16)

1. Let ϕ be a free real scalar field. The commutator $\Delta(x)=[\phi(x), \phi(0)]$ is a c-number (i.e. it is proportional to the identity operator in Fock space) and is known as the commutator function for ϕ. Compute the commutator function for the case $m=0$ (massless free field). Hint: by rotational invariance, you may assume that the spatial part of x is along the x^{1} axis. The integral over k_{2} and k_{3} is easily computed, if we recall that

$$
\frac{d^{3} k}{2 \omega_{k}}=d^{4} k \delta\left(-k^{2}\right) \theta\left(k^{0}\right),
$$

where θ is a step-function, i.e. $\theta(x)=0$ if $x<0$ and $\theta(x)=1$ if $x>0$. The remaining integral over k^{0} and k^{1} is most easily evaluated in the "light-cone coordinates" $k_{+}=k^{0}-k^{1}$ and $k_{-}=k^{0}-k^{1}$.
2. Let ϕ be as in problem 1. Compute the vacuum expectation value

$$
<0|\phi(x) \phi(0)| 0>
$$

Hint: be careful, this is a distribution, not a function. Use the same method as in problem 1.
3. The Hamiltonian for the free complex scalar field of mass m is

$$
H=\int d^{3} x\left(p^{\dagger} p+\partial_{i} \phi^{\dagger} \partial_{i} \phi+m^{2} \phi^{\dagger} \phi\right)
$$

Here $p=\partial_{0} \phi^{\dagger}$ is the momentum conjugate to ϕ and $p^{\dagger}=\partial_{0} \phi$ is the momentum conjugate to ϕ^{\dagger}. The nonvanishing equal-time commutators are

$$
[p(\vec{x}), \phi(\vec{y})]=-i \delta^{3}(\vec{x}-\vec{y}), \quad\left[p^{\dagger}(\vec{x}), \phi^{\dagger}(\vec{y})\right]=-i \delta^{3}(\vec{x}-\vec{y}) .
$$

Show that the Heisenberg equations of motion

$$
i \partial_{0} \phi=[H, \phi], \quad i \partial_{0} p=[H, p]
$$

are equivalent to the Klein-Gordon equation for ϕ.
4. (a) Consider a field theory with three real scalar fields $\phi^{a}(x), a=1,2,3$, and a Lagrangian

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi^{a}(x) \partial^{\mu} \phi^{a}(x)-V\left(\phi^{a} \phi^{a}\right) .
$$

Here summation over repeating indices a is assumed, and V is an arbitrary function. This Lagrangian is obviously invariant with respect to orthogonal transformations of the fields ϕ^{a} :

$$
\phi^{a}(x) \mapsto \tilde{\phi}^{a}(x)=R_{b}^{a} \phi^{b}(x),
$$

where R_{b}^{a} is a constant orthogonal 3×3 matrix. The rotation group in three dimensional space has dimension three, so we expect to get three conserved currents. Show that infintesimal transformations for $\phi^{a}(x)$ can be put into the form

$$
\delta \phi^{a}(x)=\epsilon^{a b c} \phi^{b}(x) \beta^{c},
$$

where $\beta^{c}, c=1,2,3$ parametrize an infintesimal rotation, and $\epsilon^{a b c}$ is a completely anti-symmetric tensor uniquely defined by the condition $\epsilon^{123}=1$. Deduce the conserved currents corresponding to this symmetry.
(b) Let the currents found in part (a) be called $J^{a \mu}, a=1,2,3$. The corresponding charges are

$$
Q^{a}=\int d^{3} x J^{a 0}(x)
$$

Compute the commutator of Q^{a} and Q^{b} using canonical commutation relations for ϕ^{a} and their time derivatives. Show that Q^{a} form a Lie algebra isomorphic to the Lie algebra of the rotation group (i.e. show that they obey the same commutation relations as components of the angular momentum operator in quantum mechanics).

