Week 9 (due March 12)

1. Consider a theory of a gauge field A_{μ} and a real scalar σ with the Lagrangian

$$L = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - M^2 D_\mu \sigma D^\mu \sigma,$$

where $D_{\mu}\sigma = \partial_{\mu}\sigma + A_{\mu}$.

(a) Compute the propagator for the fields A and σ in the Lorenz gauge and more generally in the α -gauge. I remind that the α -gauge is equivalent to adding to the action a term

$$\frac{-1}{2\alpha}(\partial^{\mu}A_{\mu})^2.$$

The Lorenz gauge is recovered in the limit $\alpha \to 0$. Note that there will be "mixed" propagators between A_{μ} and σ ; don't forget about them. Determine the locations of the poles of the propagators.

(b) Now consider what is called an 't Hooft gauge. This is actually a family of gauge conditions given by

$$\partial^{\mu}A_{\mu} - \beta\sigma = 0,$$

where β is a parameter. This gauge interpolates between the Lorenz gauge $\beta = 0$ and the unitary gauge which is obtained in the limit $\beta = \infty$. Compute the propagators for A_{μ} and σ in this gauge by adding a gauge-fixing term of the form

$$B(\partial^{\mu}A_{\mu}-\beta\sigma)$$

where B is a Lagrange multiplier field. Determine the locations of the poles in the propagators as a function of β . Make conclusions about which poles are physical and which are unphysical.

2. Consider a theory of a gauge field in three-dimensional space-time with a Lagrangian

$$L = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + k\epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho}.$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. The second term in the Lagrangian is called the Chern-Simons term, and the theory is called Chern-Simons-Maxwell theory. Derive the propagator for the field A in the Lorenz gauge $\partial_{\mu}A^{\mu} = 0$ by adding a term

$$B\partial_{\mu}A^{\mu}$$

to the Lagrangian, where B is a new independent field (the Lagrange multiplier field).