Week 5 (due Nov. 6)

- 1. Problem 11.1 (Srednicki)
- 2. Consider free scalar field ϕ of mass m. Show that the Green's function

$$G^{(2)}(x) = \langle 0 | T(\phi(x)\phi(0)) | 0 \rangle$$

satisfies

$$(-\partial^2 + m^2)G^{(2)}(x) = -i\delta^4(x).$$

You are not allowed to use the explicit expression for $G^{(2)}(x)$ as an integral over k; rather, you should use the fact that $\phi(x)$ satisfies

$$(-\partial^2 + m^2)\phi = 0,$$

and the canonical (equal-time) commutation relations for ϕ and $\partial_0 \phi$.

3. The theory of a complex scalar field ϕ describes spinless bosonic particles and their anti-particles. Write down the version of the LSZ reduction formula which expresses the scattering amplitude of an arbitrary number of particles and anti-particles in terms of time-ordered vacuum expectation values of the fields ϕ and ϕ^{\dagger} . You do not need to provide a derivation.