Week 3 (due Oct. 23)

Reading: Srednicki, sections 4 and 5.

1. Compute the commutator function $[\phi(x), \phi(0)]$ for the free real scalar field ϕ with zero mass (m = 0). Hint: by rotational invariance, you may assume that the spatial part of x is along the x^1 axis. The integral over k_2 and k_3 is easily computed, if we recall that

$$\frac{d^3k}{2\omega_k} = d^4k\,\delta(-k^2)\theta(k^0).$$

. The remaining integral over k^0 and k^1 is most easily evaluated in the "light-cone coordinates" $k_+ = k^0 - k^1$ and $k_- = k^0 - k^1$.

2. Let ϕ be as in problem 1. Compute the vacuum expectation value

$$<0|\phi(x)\phi(0)|0>.$$

Hint: be careful, this is a distribution, not a function. Use the same method as in problem 1.

3. The Hamiltonian for the free complex scalar field of mass m is

$$H = \int d^3x \left(p^{\dagger}p + \partial_i \phi^{\dagger} \partial_i \phi + m^2 \phi^{\dagger} \phi \right).$$

Here $p = \partial_0 \phi^{\dagger}$ is the momentum conjugate to ϕ and $p^{\dagger} = \partial_0 \phi$ is the momentum conjugate to ϕ^{\dagger} . The nonvanishing equal-time commutators are

$$[p(\vec{x}), \phi(\vec{y})] = -i\delta^3(\vec{x} - \vec{y}), \quad [p^{\dagger}(\vec{x}), \phi^{\dagger}(\vec{y})] = -i\delta^3(\vec{x} - \vec{y}).$$

Show that the Heisenberg equations of motion

$$i\partial_0\phi = [H,\phi], \quad i\partial_0p = [H,p]$$

are equivalent to the Klein-Gordon equation for ϕ .

4. (a) Consider a field theory with three real scalar fields $\phi^a(x)$, a = 1, 2, 3, and a Lagrangian

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi^{a}(x)\partial^{\mu}\phi^{a}(x) - V(\phi^{a}\phi^{a}).$$

Here summation over repeating indices a is assumed, and V is an arbitrary function. This Lagrangian is obviously invariant with respect to orthogonal transformations of the fields ϕ^a :

$$\phi^a(x) \mapsto \phi^a(x) = R^a_b \phi^b(x),$$

where R_b^a is a constant orthogonal 3×3 matrix. The rotation group in three dimensional space has dimension three, so we expect to get three conserved currents. Show that infinitesimal transformations for $\phi^a(x)$ can be put into the form

$$\delta\phi^a(x) = \epsilon^{abc}\phi^b(x)\beta^c,$$

where $\beta^c, c = 1, 2, 3$ parametrize an infinitesimal rotation, and ϵ^{abc} is a completely anti-symmetric tensor uniquely defined by the condition $\epsilon^{123} = 1$. Deduce the conserved currents corresponding to this symmetry.

(b) Let the currents found in part (a) be called $J^{a\mu}, a = 1, 2, 3$. The corresponding charges are

$$Q^a = \int d^3x J^{a0}(x).$$

Compute the commutator of Q^a and Q^b using canonical commutation relations for ϕ^a and their time derivatives. Show that Q^a form a Lie algebra isomorphic to the Lie algebra of the rotation group (i.e. show that they obey the same commutation relations as components of the angular momentum operator in quantum mechanics).