Week 2 (due Oct. 16)

Reading: Srednicki, sections 1 and 3.

1. Consider free nonrelativistic bosons of mass m (in the Fock space formalism).
(a) Compute the commutator of the field operators

$$
\left[\Psi(t, \mathbf{x}), \Psi^{\dagger}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right]
$$

for arbitrary $t, t^{\prime}, \mathbf{x}, \mathbf{x}^{\prime}$. Hint: use solutions for Ψ and Ψ^{\dagger} in terms of momentum space operators a_{p} and a_{p}^{\dagger}.
(b) Consider the vector-valued operator \mathbf{P} with components

$$
P_{k}(t)=-i \int \Psi^{\dagger}(t, \mathbf{x}) \partial_{k} \Psi(t, \mathbf{x}) d^{3} x, \quad k=1,2,3
$$

Let H be the usual Hamiltonian in Fock space, i.e.

$$
H=\frac{1}{2 m} \int \partial_{k} \Psi^{\dagger} \partial_{k} \Psi d^{3} x
$$

Show that $[H, \mathbf{P}]=0$, i.e. \mathbf{P} is an integral of motion. Show that

$$
[\mathbf{P}(t), \Psi(t, \mathbf{x})]=i \nabla \Psi(t, \mathbf{x}), \quad\left[\mathbf{P}(t), \Psi^{\dagger}(t, \mathbf{x})\right]=i \nabla \Psi^{\dagger}(t, \mathbf{x})
$$

i.e. \mathbf{P} is the generator of translations.

